
page 1.Las Vegas, April 27th, 2011ICECCS 2011

An Efficient Modeling and Execution Framework for C omplex Systems Development

Isabelle Perseil, Laurent Pautet, Jean-François Rol land, Mamoun Filali, Didier Delanote, Stefan Van Bae len,
Wouter Joosen, Yolande Berbers, Frédéric Mallet, Dom inique Bertrand, Sébastien Faucou, Abdelhafid Zitoun i,

Mahmoud Boufaida, Lionel Seinturier, Joel Champeau, Thomas Abdoul, Peter H.Feiler, Chokri Mraidha,
Sébastien Gérard

page 2.Las Vegas, April 27th, 2011ICECCS 2011

Roadmap

� -1- Introduction

� -2- A modeling and execution framework based on UML/MARTE and AADL
models

� -3- Efficient embedded runtime systems through port, communication
optimization

� -4- Formal verification of the architecture models

� -5- Conclusions

page 3.Las Vegas, April 27th, 2011ICECCS 2011

1 - Introduction

� Increasingly complex architectures, DRE systems, need for a model-driven
approach
� intricacy of the multiple interdependent features they have to manage.
� meet new requirements of reusability, interoperability, flexibility and portability
� global vision of the system
� handling real-time characteristics

� AADL and MARTE - UML extension for RTE - are both modeling formalisms
supporting the analysis of real-time embedded systems

� MARTE Time Model facilities � to represent faithfully AADL periodic/aperiodic
tasks communicating through event or data ports, in an approach to end-to-end
flow latency analysis

� AADL supports a port communication model: ensures deterministic
processing of signal streams

� Verification of AADL models (operating modes), translation on formal models
(IF)

page 4.Las Vegas, April 27th, 2011ICECCS 2011

2-a-MARTE in a nutshell

� MARTE: short name for “The UML profile for Modeling and Analysis of Real-time and Embedded
systems”.

� This figure denotes the architecture of this UML profile.

� The HLAM profile provides concepts for modeling both aspects at a high abstraction level :

• Modeling quantitative features such as deadline and period

• Modeling qualitative features that are related to communication, behavior and concurrency

� Stereotypes «RtUnit» and «PpUnit» model concurrency and shared information

protected passive unitsreal-time unit

page 5.Las Vegas, April 27th, 2011ICECCS 2011

MARTE in a nutshell

� «RtUnit»: similar to the active object concept, with more detailed semantics �
properties
� autonomous execution resource, owns one ore more schedulable resources to handle

incoming messages
� owns a concurrency and behavior controller for managing message constraints according

to its current state and current execution constraints attached to incoming messages
� may own one or several behaviors . A message queue for storing incoming messages is

defined for each of these behaviors

� «PpUnit»: enabling real-time units to share information
� may specify their concurrency policy either globally or for all of their provided services

through the concPolicy property.
� do not own schedulable resources for execution, uses a schedulable resource of the RtUnit

that invokes one of its services to execute it.

� «RtFeature» (real-time feature) defines characteristics that can be attached to a real-
time service, a real-time action, a message or a signal.
� may specify the occurrence kind of a behavior (e.g., periodic, aperiodic, sporadic, etc.)

through the occKind property . A time reference used by the other relative timing properties
may be specified through the tRef property .

� may specify a deadline (relative or absolute) through the relDl and absDl properties.

page 6.Las Vegas, April 27th, 2011ICECCS 2011

Details on a MARTE-executor enabler

� Accord|UML: a model-based methodology � embedded real-time applications
development
� to provide both the method and the underlying toolkit for specification and

prototyping of embedded real-time systems.

� It enables executable models: a model is executable when it can be operated
on a computer. � model transformation from MARTE model annotated with
HLAM's extensions to an existing executable platform.

� a dedicated automatic code generation process taking into account specified
real-time features, and a specific execution framework.
� provides an operating support for some of the high level real-time concepts defined in the

HLAM sub-profile.

� The code generation facility provided by Accord|UML consists of:
� (i) a set of transformation used to apply implementation patterns on real-time concepts;
� (ii) a standard C++ code generator, "standard" meaning that it is not dedicated to Accord|UML

or the execution framework.

page 7.Las Vegas, April 27th, 2011ICECCS 2011

Details on a MARTE-executor enabler

� Within Accord|UML, modeling of behavior for RtUnits
supported by the platform has to conform the following principle:
� (i) RtBehavior state machine models the control aspects of the behavior of a real-

time unit;
� (ii) RtService operations for the algorithmic concerns .

� The specified behavior is operated using software execution
resources.
� OS thread based , managed in a global pool by the RtUnit that loads and starts the execution.

� These threads are dynamically allocated to the RtService for execution and released after.

� Regarding the modeling rules, to comply with this execution
semantics, RtUnits must be used with the isDynamic property
set to false (execution resources are not created dynamically).

� The framework provides support for communication and
distributed execution .

page 8.Las Vegas, April 27th, 2011ICECCS 2011

2-b-End to end flow latency in AADL and UML MARTE

� AADL focuses on specific aspects amenable to schedulability analysis
� MARTE scope is much larger / encompasses several modeling aspects valuable

independently of specific analysis techniques.

� A MARTE model � serve as a model repository to be processed and partially analysed
by a wide range of techniques
� including scheduling, schedulability, performance

� from several communities: queueing networks, Petri nets, discrete-event simulations,
synchronous-/reactive.

� � serve to gather into a single model results from various teams/tools at different
stages in the design flow.

� Critical point: ensure that MARTE Time model can express the same semantics as the
one implied by AADL periodic/aperiodic tasks communicating through event or
data ports

� AADL input models describe the application (software) parts as a set of tasks with
features like the so-called dispatch_protocol (periodic, aperiodic, sporadic,
background), latencies, execution times

page 9.Las Vegas, April 27th, 2011ICECCS 2011

AADL provides a two-level model with the software part to be
bound with the hardware architecture

we shall consider varying assumptions on the applic ation
pipeline communication and computation timing natur e

step1 step3step2

acquire release

ExecutionPlatform
Device (sensor)

ExecutionPlatform
Device (actuator)

Software
Aperiodic thread

page 10.Las Vegas, April 27th, 2011ICECCS 2011

Two level AADL vs Three-level MARTE
three layer UML/MARTE � relations among the layers: the allocation
mechanism

Application

(UML activity
diagrams)

Software
execution
platform

Hardware
execution
platform

(Composite
Structure diagrams)

In MARTE � split the software
level in 2 levels:
-pure applicative part with only
causality relations and no
scheduling information
-The software execution platform
describes schedulable resources

AADL hardware architecture 2 separate aspects of the AADL device Ds � the UML action acquire and
the hardware resource Ds, combined using the stereotype <<allocate>>

page 11.Las Vegas, April 27th, 2011ICECCS 2011

Modeling only periodic tasks with MARTE

� To model AADL communication semantics we use MARTE Clock constraints that
extend UML constraints with CCSL (Clock Constraint Specification Language) to relate
different parts of the model

� When we only consider periodic threads that are in phase �two kinds of CCSL
constraints: alternatesWith represents event alternation and isPeriodic-On makes two
events periodic relatively to each other.

� we can use these constraints to link together actions and threads
� Every time a thread is dispatched, the corresponding action starts:

� t1 alternatesWith step1.

� This constraint also implies that the action must finish before the next dispatch, which is
also the semantics of AADL threads. Then, we use the relation isPeriodicOn to model
the periodicity of the threads.

page 12.Las Vegas, April 27th, 2011ICECCS 2011

Mixing periodic/aperiodic tasks
CCSL constraints derived from the MARTE model

Derived constraints when the three threads t1, t2 and t3 are synchronus
(3 sampled communications are followed by an asynchronus communication
From thread t3 to device Da

� A task sends a data to an aperiodic task, the communication is purely asynchronous. The relation
alternatesWith can model asynchronous communications.

� an aperiodic task sends a data to a periodic case. In that case, the communication is synchronized, the data will
be sampled on the clock of the receiving task, the sampling clock � sampledOn

sampling clock

Discrete chronometric clock

Actions (starting and finishing)

communications

Partial ordering implied by CCSL constraints

page 13.Las Vegas, April 27th, 2011ICECCS 2011

Timing analysis results: UML Timing Diagrams

page 14.Las Vegas, April 27th, 2011ICECCS 2011

3 - Efficient embedded runtime systems through port
communication optimization (1)

� AADL supports a port communication model
� includes queued event and message communication,

� unqueued data stream communication.

� The AADL standard provides well-defined execution and communication semantics for
threads in the form of a input-compute-output model .

� Data stream communication between periodic threads can be specified to occur
� as mid-frame communication (immediate data port connections), or

� as phase-delayed communication (delayed data port connections).

� A runtime system that implements the execution and communication semantics of
AADL must ensures that the deterministic sampling property is preserved.
� it must use double buffering as necessary and
� perform transfer of data between buffers in such a manner that deterministic sampling and

processing is achieved.

� It is desirable to minimize the number of times data must be transferr ed between
separate buffers
� if possible to reduce the implementation of the communication to a shared variable solution ;

page 15.Las Vegas, April 27th, 2011ICECCS 2011

Efficient embedded runtime systems through port
communication optimization (2)

� An analytical framework that allows to optimize the implementation of a port-
based communication model by minimizing the number of separate
buffers
� necessary to ensure the deterministic sampling properties desirable for control

system application

� and expressed by the semantics of AADL port connections

� Reduce number of variables/buffers necessary by
� looking at the life span of the content of a port variable/buffer does not overlap with

another the two can be mapped into the same memory location.

� The analytical framework based on of buffer life spans allows us to determine
� how many buffers/variables are necessary and
� when data must be transferred between them to ensure the input-compute-output

model and deterministic sampling.
� this information can be embedded in an automatic code generator for a runtime

executive that is tailored to the architecture expressed in the AADL model.

page 16.Las Vegas, April 27th, 2011ICECCS 2011

4 - Formal verification of the architecture models
a- AADL mode change protocol

� Changing the operating mode results in
� modifying the architecture of the system so as to match the

set of functions associated with the new mode .

� AADL support the specification of multimodal
architecture

� AADL proposes a mode change protocol that
defines how and when the configuration of the
system is modified when processing a mode
change request.

page 17.Las Vegas, April 27th, 2011ICECCS 2011

Formal verification of the architecture models
Modes in AADL (1)

� The architecture of a system is modeled in AADL as a
hierarchy of components .

� Each component is described as a composition of
smaller components.

� The system is composed of the platform (processors,
� memories, buses, devices) and the software (processes,

threads, data, sub-programs).
� Each of these components has one or more operating modes .

� A mode defines a configuration of the component .
� A configuration is defined by the set of active

subcomponents, the topology of internal connections,
and specific values for modes dependant properties.

page 18.Las Vegas, April 27th, 2011ICECCS 2011

Formal verification of the architecture models
Modes in AADL (2)

� The global state of a system is defined by a vector of modes

called System Operational Modes (SOM).
� Each element of the vector represents the mode of a component.

� The initial SOM is defined
� by the initial mode of the root component and
� the initial modes of its recursively active subcomponents.

� The result of a mode transition is a modification of elements
involved in the mode switch.

� Performing a mode change imposes to cross a transient stage
between two stable configurations.

� The AADL standard defines precisely the instant where the
changes of the configuration have to be realized

page 19.Las Vegas, April 27th, 2011ICECCS 2011

Formal verification of the architecture models
Modes in AADL (3) / the AADL mode change protocol

� The SOM change protocol comprises three steps:
� (1) leaving the old SOM;

� (2) performing the SOM change (the threads to be removed execute their
deactivation entrypoint, the threads to be added execute their activation entrypoint);

� (3) entering the new SOM.

� To ensure the determinism of the mode change, the instants where a thread is
activated / deactivated or the instant where a connection is added / deleted
cannot be randomly chosen.

� During the SOM transition period,
� some processing remaining from the old SOM,

� some processing related to the SOM change process,

� and some processing attached to the new SOM, are performed.

� By synchronizing the processing of configuration changes with the hyperperiod
of the impacted critical threads, this protocol aims at preserving the
determinism of inter-thread communications

page 20.Las Vegas, April 27th, 2011ICECCS 2011

Formal models (1)
Formalization in Time Petri Nets

� The translation process from an AADL specifcication to a TPN is
composed of two steps.
� First, the specification of the SOM transition system is extracted from the

hierarchical AADL model.
� The output of this step is a labelled transition system (LTS). Each state is a

SOM of the system.

� Each transition is labelled with the name of an event, the occurrence of which
triggers the mode change from the source state to the target state.

� Second, a TPN model is built from the LTS, by composing elementary
patterns.

� The resulting model can be used to simulate and analyze the
timed modal behaviour of AADL specifications.

page 21.Las Vegas, April 27th, 2011ICECCS 2011

Formal models (2)
Formalization of the mode transition in TLA

� In our model, we distinguish three types of threads, normal threads that are
stopped on a mode switch, critical threads whose execution must be terminated
at the time of the mode transition, and zombie threads that are allowed to end
their execution in the new mode.

� The set of available mode transitions and the set of active threads for each
mode are also given as constant functions.

� We describe in TLA a transition system
� The set of possible states is defined by a set of variable

� and the evolution by a set of transitions.

� The state is define by the following variables:
� currentMode, currentEvent, currentThreads, and zombies.
� The set currentThreads represent the executing threads,

� currentEvent store the name of the event that triggered a transition,
� and zombies is the set of threads of the old mode still executing after a mode transition.

page 22.Las Vegas, April 27th, 2011ICECCS 2011

b- AADL Execution Semantic Transformation for formal
verification
Context

� In order to validate formal properties on these AADL models, we must use
formal frameworks which provide diagnostics on the system.

� This goal is achieved if we have a powerful set of tools which offer the capacity
to transform the AADL model into formal model .
� Source language : AADL execution model
� Target language : IF Language (enables a model whose basic unit is a system ("system") to

be described).

� This system is composed of active entities, or "processes".
� entities interact with messages named "signal" in an asynchronous way in a parallel

execution.
� "processes" are timed automata communicating by message buffers with urgencies.

� The communication channels are managed with buffers in "signalroute" and
parameterized to specify:
� Communication type (multicast, unicast, peer)
� Media quality (applicable, lossy)
� Buffer type (fifo, multiset)
� Communication urgency (urgent, delay, rate)

page 23.Las Vegas, April 27th, 2011ICECCS 2011

AADL Execution Semantic Transformation for formal
verification
AADL model transformation - Structure

� Basic concept equivalences for transformation rules
specification :
� SystemImpl which represents the component root of the models is

transformed into a IF "system“ , root element of an IF model .
� DataType is transformed into a IF type
� The Process and Thread are concepts which require detailed attention

because they incorporate the behaviour in AADL. Inevitably the processes
have to contain at least one Thread or ThreadGroup, the transformation
transforms the Thread into IF process according to the approach detailed
in the following paragraph.

� An AADL ThreadType element has properties and ports.
� Ports provide communication mechanism for Event, Data or

EventData.
� These various types of communication are transformed into type IF

"signal" and managed by an IF "process" whose execution is decoupled
from the Thread behaviour.

page 24.Las Vegas, April 27th, 2011ICECCS 2011

AADL Execution Semantic Transformation for formal
verification
AADL model transformation - Behaviour

� We chose to provide a behaviour annex based on NTIF language.
� NTIF and IF language are closed. However NTIF provides high

level instructions, like Select which authorizes several transitions
going to various target state.

� NTIF transition transformation cannot be one IF transition.
� The Subprogram invocation has a semantic defined by the

property Server_Call_Protocol which can take several values:
� synchronous (HSER),
� half synchronous (LSER)
� or asynchronous (ASER)

� Within this framework, a Subprogram component is transformed
into IF "process" which has the same parameters as AADL
Subprogram.

page 25.Las Vegas, April 27th, 2011ICECCS 2011

AADL Execution Semantic Transformation for formal verification
AADL model transformation - Execution semantics

This represents an abstraction of the complete automaton
To improve the execution model transformation � add states and IF clocks for transition guards

The execution model is based on the control automaton

page 26.Las Vegas, April 27th, 2011ICECCS 2011

Conclusions on various contributions

� Model-driven engineering of real-time and embedded applications requires a modeling language
providing concepts to capture at a high level of abstraction their qualitative and quantitative
features.

� The UML profile for MARTE provides such concepts and is suited for real-time applications
modeling.

� MARTE can be used to model mixed systems with both periodic and aperiodic tasks, which is a big
issue while modeling embedded systems.

� Comparison of MARTE and AADL: highlighting MARTE capabilities to make the computation
formulas explicit.

� Several analysis frameworks. � to determine the impact of different implementation choices for
communication on the latency characteristics of data stream being communicated. It establishes
criteria for data integrity and for deterministic data communication.

� A formal semantics given as a translation algorithm computing a TPN �simulating the mode
change behaviour of an AADL specification.

� An AADL model transformation that provides a formal model for model checking activities � to
describe transformation rules distributed in three catagories: rules of component transformations of
the AADL language, rules of behaviour transformations of the AADL threads, rules of operational
semantics transformations for threads.

